

www.aselsan.com.tr

ASELSAN is a Turkish Armed Forces Foundation company.

Serkan ZOBAR, Ertuğrul AKSOY

ASELSAN Defence Systems Technologies Business Sector

September 29, 2021

AGENDA

aselsan

Introduction

- Absolute Positioning
- Relative Positioning
- Distance Estimation via UWB Signals
- Applied Method
 - Classical MDS
 - Procrustes Analysis
- Application
 - Deployed Network
 - Setup
 - Results
- Conclusions and Future Work

NATO STO-MP-SET-275

aselsan

Node Positioning in Wireless Sensor Networks

A Crucial Issue for Military, Civilian and Industrial Areas $\sqrt{}$

INTRODUCTION

Node Positioning

Absolute

- A known global/local reference system,
- > To create the reference system
 - Anchors with known positions a priori
 - Anchors equipped with GNSS receivers

Relative

- NOT require any prior position information or an external infrastructure such as GNSS signals, landmarks or beacons
- Relies only on the pairwise distances between nodes!!!

DISTANCE ESTIMATION via UWB SIGNALS aselsan

- UWB is one of the most promising RF Technologies for relative positioning
- Much more precise than others such as Wi-Fi, Bluetooth, etc.
- Penetration through obstacles
- Immunity to multipath fading thanks to the high time resolution

NATO STO-MP-SET-275

Our method assumes that

✓ We have a network which is not fully-connected but it contains fully-connected subnetworks!!!

Our method applies

- ✓ Multidimensional Scaling (MDS) Part I
 - Local relative maps for fully-connected subnetworks are obtained by applying MDS
- ✓ Procrustes Analysis Part II
 - By merging these local maps via Procrustes analysis, a global map for the entire network is created.

APPLIED METHOD - Part I - MDS

What does the MDS algorithm provide for relative positioning purposes?

- MDS provides a map for a fullyconnected network using the pairwise distances between the nodes in the network
- MDS eliminates the translational freedom, but, not the rotational one. Thus, MDS can not provide the axes orientation!!!

aselsan

Classical MDS Algorithm:

Step 2. Construct nxn centering matrix C

Step 1. Given the pairwise distances between nodes, d_{ij}, set up the matrix of squared distances D such that

$$\mathbf{D} = \begin{bmatrix} 0 & d_{12}^2 & \cdots & d_{1n}^2 \\ d_{21}^2 & 0 & \cdots & d_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1}^2 & d_{n2}^2 & \cdots & 0 \end{bmatrix}$$

C=I--J n

where I and J are identity and all-ones matrices, respectively, with nxn sizes.

Step 3. Apply double centering to remove the means from each rows and columns of D and to obtain symmetric positive semi-definite matrix N with the size nxn

$$V = -\frac{1}{2}CDC$$

- Step 4. Determine the m largest eigenvalues λ₁, λ₂, ..., λ_m and corresponding eigenvectors e₁, e₂, ..., e_m of N where m is the number of dimensions identified by the sensor network structure. For example, m=2 for two-dimensional networks and m=3 for three-dimensional networks.
- Step 5. Finally, the relative positions of n sensor nodes are derived from the mxn coordinate matrix X

 $X = \Lambda^{1/2} E^T$

where $\Lambda^{1/2} = \text{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, ..., \sqrt{\lambda_m})$, E is the matrix of corresponding m eigenvectors of N, and the superscript ^T denotes the transpose of a matrix.

NATO STO-MP-SET-275

7/15

APPLIED METHOD - Part II - Procrustes Analysis **aselsan**

Who is Procrustes?

- An innkeeper in Greek
 Mythology who made his guests fit the size of an iron bed
 - By stretching them if they were too short
 - By chopping off their extremities if they were too long.

What is Procrustes analysis? Of Course Mathematically ©

- Matching one representation to another and producing a measure for this matching
- Finding rigid motions (i.e., reflection, rotation and translation) and isotropic dilation.

Picture taken from «GENERALIZED PROCRUSTES ANALYSIS AND ITS APPLICATIONS IN PHOTOGRAMMETRY», M. Devrim AKCA, 2003

APPLICATION - Deployed Network

aselsan

APPLICATION - Setup

A.

aselsan

B₃

EVB1000 Module

B₂

NATO STO-MP-SET-275

APPLICATION - Setup

aselsan

UWB Estimates											
MDS + Procrustes											
Nodes	$\mathbf{A_1}$	\mathbf{A}_2	A ₃	\mathbf{B}_1	\mathbf{B}_2	B ₃	\mathbf{B}_4	\mathbf{B}_5	\mathbf{B}_{6}	\mathbf{B}_7	$\mathbf{B_8}$
A 1	0	10.48 10.71 10.71	6.27 6.47 6.46	9.08 9.15 9.15	7.89 8.03 8.01	5.91 6.06 5.99	3.80 3.92 3.88	3.06 3.21 3.12	2.55 2.69 2.57	6.63 6.76 6.76	5.43 5.62 5.57
\mathbf{A}_2	10.48 10.71 10.71	0	5.94 6.21 6.21	3.80 3.96 3.93	2.68 2.86 2.83	4.80 5.01 4.91	7.52 7.73 7.72	7.42 7.62 7.60	8.42 8.63 8.61	4.69 4.87 4.88	5.13 5.33 5.29
A ₃	6.27 6.47 6.46	5.94 6.21 6.21	0	3.06 3.13 3.04	3.50 3.63 3.61	4.24 4.40 4.40	2.47 2.65 2.58	3.84 4.00 3.96	5.53 5.74 5.75	1.34 1.35 1.43	2.47 2.59 2.49
B 1	9.08 9.15 9.15	3.80 3.96 3.93	3.06 3.13 3.04	0	2.68 2.59	5.09	5.40 5.40	6.27 6.23	7.80 7.84	2.47 2.40	4.03 3.87
B ₂	7.89 8.03 8.01	2.68 2.86 2.83	3.50 3.63 3.61	2.68 2.59	0	2.68 2.72	4.84 4.89	4.84 4.89	6.03 6.14	2.16 2.19	2.47 2.48
B 3	5.91 6.06 5.99	4.80 5.01 4.91	4.24 4.40 4.40	5.09 5.03	2.68 2.72	0	4.03 4.05	3.00 3.04	3.65 3.71	3.23 3.28	1.80 1.94
B 4	3.80 3.92 3.88	7.52 7.73 7.72	2.47 2.65 2.58	5.40 5.40	4.84 4.89	4.03 4.05	0	1.90 1.88	3.50 3.57	3.06 3.11	2.55 2.52
B 5	3.06 3.21 3.12	7.42 7.62 7.60	3.84 4.00 3.93	6.27 6.23	4.84 4.89	3.00	1.90 1.88	0	1.70 1.79	3.80 3.84	2.40 2.48
B 6	2.55 2.69 2.57	8.42 8.63 8.61	5.53 5.74 5.75	7.80 7.84	6.03 6.14	3.65 3.71	3.50 3.57	1.70 1.79	0	5.37 5.49	3.80 3.97
B 7	6.63 6.76 6.76	4.69 4.87 4.88	1.34 1.35 1.43	2.47 2.40	2.16 2.19	3.23 3.28	3.06 3.11	3.80 3.84	5.37 5.49	0	1.70 1.61
B 8	5.43 5.62 5.57	5.13 5.33 5.29	2.47 2.59 2.49	4.03 3.87	2.47 2.48	1.80 1.94	2.55 2.52	2.40 2.48	3.80 3.97	1.70 1.61	0

Actual

NATO STO-MP-SET-275

Releasable to PfP, STO EOPs and Singapore

APPLICATION - Results - Part I - MDS

aselsan

NATO STO-MP-SET-275

Releasable to PfP, STO EOPs and Singapore

APPLICATION - Results - Part II - Procrustes aselsan

aselsan

Application results show that

The method provides the following abilities

- to build relative local maps of fully-connected subnetworks,
- ✓ to merge these local maps together by using their common nodes to obtain a relative global map of the entire network,
- ✓ To obtain pairwise distances among unconnected nodes which cannot be estimated via UWB signals.

For future work

The method will be studied for

- ✓ Three-dimensional networks,
- Evaluating the real-time application costs such as power consumption, time complexity, etc.

Thanks for your consideration!!! Questions?